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ABSTRACT 

A model describing the flow of plasma from the capillaries to the interstitial space 

in the extravascular tissue and back into the capillaries is constructed and solved. The 

flow through the tissue or the interstitial spaces is described by the Brinkman equation for 

porous medium, modified to account for the presence of cells considered as spheres. The 

flow of blood through the capillaries is considered to be that of a Newtonian fluid. The 

flow between capillary and tissue is coupled by the permeability of the capillary wall. 

The nature of flow and its magnitude was found to be highly dependent on the values of 

the coupling constants which relate the resistances to plasma flow in the extravascular 

space and the capillary. The flow in the extravascular tissue is found to be very low. The 

flow profiles show that there is mixing of the interstitial fluid in the extravascular tissue. 

It is shown here that local flow of plasma both in the extravascular space and lymph flow. 

This model bridges the gap between Krogh cylinders when only diffusion is considered, 

and stirred tanks where convection is dominant. The model also consider the leaky effect, 

and compare the health liver and tumor tissue.  
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1. INTRODUCTION 

1.1. SIGNIFICANCE OF THE STUDY 

Death rate from cancer is very high.  The traditional treatment of tumors generally 

involves two steps – surgical removal of tumor or radiation therapy and chemotherapy 

subsequent therapeutic management of residual cancer cells. Chemotherapy, also called 

“chemo”, is the use of strong drugs to kill cancer cells. Drugs are chosen which depend 

on the kind of cancer and how much cancer is in human body. However, the drug 

treatments are not able to remove all of malignant tumors in most cases of clinical 

application, although the drug could stop their growth. The delivery of chemo into cancer 

tissue is also a problem, as the drug relies on permeability and retention. Chemotherapy 

causes different levels of damage to normal tissue cell when the drug acts to destroy 

growing cancer cells. One of the explanations is related to the microvascular network is 

heterogeneity and the cancer cell will destroy and increase permeability of the 

microvascular tissue. The leaking blood vessel will decrease the lymphatic function and 

raise interstitial pressure (Guyton and Hall, 2000, pp185). Hence, in order to devise the 

dosage strategies to the patient, the models that predict the bloodstream transfer from 

capillary to tissue become important. 

 

1.2. BACKGROUND INFORMATION 

 In order to simulate the flow of plasma from the capillary vessel to extravascular 

tissue, we begin with the description of basic circulation below and then on to flow at 

lower scales.  
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 The Circulatory System  

The blood vessels form a closed circuit to and from the heart. The human vessel 

system has two circuits: pulmonary circuit and systemic circuit (Figure 1.1). 

Pulmonary circuit sends the blood to the lungs for oxygenation. This process begins 

from the right ventricle, which receives the deoxygenated blood from right atrium, 

and pumps the oxygen lean blood to pulmonary right and left arteries to unload the 

carbon dioxide and receive the oxygen. Systemic circuit supplies oxygen and 

nutrients via blood from left ventrium to brain and all body, and then disposes the 

waste.   

 

Figure 1.1 Schematic view of the main circulation. 
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The blood vessels are organs of the cardiovascular system and there are different 

types of blood vessels (Figure 1.2) having different functions. They include: 

 Arteries - carry blood away from the heart at high pressure, with thick strong 

elastic walls (three layers or tunics): endothelial lining, middle layer of smooth muscle 

and elastic tissue and outer layer of connective tissue. 

 Arterioles - receive blood from the arteries and carry blood to the capillaries. It 

has thinner wall than an artery (three layers or tunics): endothelial lining, middle and 

outer layers are thinned. Arterioles has some smooth muscle tissue and small amount of 

connective tissue, helps control blood flow into a capillary 

 Capillaries - sites of exchange of substances between the blood and the body 

cells. They are the smallest diameter blood vessels, connect the smallest arteriole and the 

smallest venule. Capillaries are extensions of the inner lining of arterioles and the walls 

are endothelium only and semi-permeable.  

Venules - receive blood from the capillaries. Microscopic vessels continue from 

the capillaries and merge to form veins, with walls thinner than arterioles, less smooth 

muscle and elastic tissue than arteriole. 

  Veins - carry blood toward the atria of the heart, thinner walls than arteries (three 

layers or tunics) and under relatively low pressure.  Middle wall is poorly developed, and 

many have flap-like valves. Thus, there is one other functions which is that of blood 

reservoir. It ensures a normal blood flow even when as much as 25% of blood is lost. 
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Figure 1.2 Schematic view of the mesenteric capillary bed (Redrawn from Zweifach 

(1950), reproduced from Guyton and Hall 2000.). 

 

1.3. MICROCIRCULATION, CAPILLARY WALL, AND THE INTERSTITUM  

 Microcirculation refers to the blood circulation between the arterioles and the 

venules. Microcirculation is not only a pathway for circulation, but also a place for 

material exchange. The capillary wall (Figure 1.3) consists of a single layer of endothelial 

cells with a basal lamina membrane on the outside. The total thickness of membrane is 

about 0.15-0.50 μm and the split between the endothelial cells at intervals of about 10-20 

nm. The water in the plasma and in the tissue fluid, various nutrient substances, and 

small-molecule organic substances can easy pass through the form of diffusion or 

filtration-reabsorption. The lipid bilayer of the endothelial cell membrane is the direct 

pathway for the diffusion of O2, CO2 and fat-soluble substances. In addition, the transport 

of macromolecules can also be achieved by the active transport of capillary endothelial 

cells. 
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Figure 1.3 Schematic view of capillary wall. From Guyton and Hall (2000). 

 

In animals, tissue fluid penetrates from the end of the capillary artery into a 

portion of the fluid in the interstitial space. After exchanging substances with the tissue 

cells, it returns to the blood or lymph through the capillary vein end or lymphatic 

capillaries. The structure as shown below Figure 1.4. 

Most of the tissue fluids are in a gel state and cannot flow. Therefore, they will 

not flow down to the lower part of the body due to gravity. Inserting the injection needle 

into the interstitial space will not allow the tissue fluid to be withdrawn. However, the 

water in the gel and the diffusive movements dissolved in water and various solute 

molecules are not hindered by the gel and can still exchange substances with blood and 

intracellular fluids. Tissue fluid is produced by the filtration of blood plasma at the 

arterial end of the capillary, and at the end of the capillary vein, most of is absorbed back 

by the blood and through the wall of the capillary. 
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Figure 1.4  Schematic view of the endothelium. From Guyton and Hall (2000). 

 

1.4. PRIMARY CONDITIONS RELATE TO FLUID MOVEMENT THROUGH 

WETHE CAPILLARY MEMBRANE AND VARIATION 

As previously mentioned, the capillaries connect the arteriole and the venule, and 

they are semi-permeable. The system of blood fluid across capillary membrane to tissue 

exchange is determined by diffusion, hydrostatic and osmotic pressure, and also other 

capillary filtration coefficients, (Jain, 1998) 

1.4.1. Fundamental of Forces Fluid Movement. Described below are the four 

pressures that control the fluid exchange between capillary and interstitial space,  

 Capillary pressure, which drives the blood flow outward from inside 

capillary to outside tissue. The blood pressure move the blood through the 
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arteries and arterioles. At the ends, arteriole has higher pressure than 

venule. This flow and diffusion are the agencies for moving water, 

oxygen, and nutrients, around.  

 Interstitial fluid pressure, which drives fluid inward back to capillary 

through membrane. The interstitial space also contains the fluid, but its 

pressure is augmented by osmotic pressure, so that the main direction of 

the fluid is inward to tissue.  

 Plasma colloid osmotic pressure, which takes the blood fluid back to 

vessel through the membrane. The blood contain the plasma proteins, 

which cannot leak into tissue due to the semi-permeable. Plasma proteins 

use to maintain the hydrostatic pressure which favors to reabsorb. 

 Interstitial fluid colloid osmotic pressure, which is inclined osmosis of 

fluid outward through the capillary membrane and oppose to hydrostatic 

pressure. It is formed by tissue protein and use to pull out the fluid from 

capillaries. 

The driving force leads the pressure difference ∆℘, and the osmotic 

pressure −𝜎∆Π, where 𝜎 is the reflection coefficient. These forces combine and provide 

the driving force for blood flow in the capillary and tissue net at any location and become 

∆℘ − 𝜎∆Π. Here Π is the osmotic pressure difference.   

1.4.2. Variation of the Force Along Capillary Length. Four driving forces push 

the plasma along the capillary, then outward and inward. At the beginning of the 

capillary, the total outward force is 13mm Hg, which moves the fluid to the extravascular 

tissue. At the end of capillary, the total force drives the fluid back into capillary, and the 
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total inward force is 7 mm Hg. During the transportation, the excess fluid in extravascular 

tissue enters the lymphatic system. The Table 1.1 and Table 1.2 present details data 

between the plasma fluid and the interstitial fluid from Guyton and Hall (2000). 

 

Table 1.1 Forces Tending to Move Fluid Outward at the Arterial End. 

Forces tending to move fluid inward  mm Hg 

     Capillary pressure at the atrial end 30 

     Negative pressure free fluid pressure 3 

     Interstitial fluid colloid osmotic pressure 8 

     Total outward force 41 

Forces tending to move fluid inward  

         Plasma colloid osmotic pressure 28 

             Total inward force 28 

NET OUTWARD FORCE 13 

 

 

Table 1.2 Forces Tending to Move Fluid Inward at the Venous End. 

Forces tending to move fluid inward  mm Hg 

     Capillary pressure at the atrial end 10 

     Negative pressure free fluid pressure 3 

     Interstitial fluid colloid osmotic pressure 8 

     Total outward force 21 

Forces tending to move fluid inward  

         Plasma colloid osmotic pressure 28 

             Total inward force 28 

NET INWARD FORCE 7 
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1.4.3. Starling Equilibrium. Starling equilibrium illustrates the average  

pressures in the capillary. The force data change as the capillary location, and the state of 

near-equilibrium exists at the capillary membrane. The amount of fluid filtered out of the 

capillaries at the end of the artery is almost exactly equal to the amount of fluid 

reabsorbed at the venous end. There is a slight imbalance, which explains the return of 

the lymphatic system to the circulating fluid. Table 1.3 present the principle of Starling 

convective equilibrium. The table shows the mean capillary pressure at the two ends. It 

gives the average functional pressure over the entire length of the capillary. For the total 

capillary circulation, the total average external force is 28.3 mm Hg and the total average 

internal force is 28 mm Hg. A slight imbalance of 0.3 mmHg causes slightly more inflow 

into the interstitial space than in the inflow capillary due to a net filtration of plasma, 

which fluid enter to the lymphatic circulation. 

 

Table 1.3 Mean Forces Tending to Move Fluid across the Capillary Membrane. 

Forces tending to move fluid inward mm Hg 

Capillary pressure at the atrial end 17.3 

Negative pressure free fluid pressure 3 

Interstitial fluid colloid osmotic pressure 8 

Total outward force 28.3 

Forces tending to move fluid inward  

Plasma colloid osmotic pressure 28 

Total inward force 28 

NET INWARD FORCE 0.3 
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Pressures are important in modeling the flow conditions.  By using above table we can 

provide an overview. 

 

 

  

Figure 1.5 Schematic view of the pressures. The osmotic pressures which drive the flow 

into the capillary are shown within brackets in (a). The net transmembrane pressures are 

shown in (b). All pressures are in mm of Hg. 
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The osmotic pressure drop is 20 mm in both arteriole and venuole ends.  If σ is set to be 1 

(it is generally close to 1) and the effect of osmotic pressure is subtracted from the actual 

pressures, the transmembrane pressures that result are shown in Figure 1.5.  The problem 

solved below cannot handle this many constraints. There the transmembrane osmotic 

pressure is set to zero and the difference between inlet and outlet pressures in a capillary 

is set to 20 mm. 

 

1.5. PREVIEW  

To understand the pharmacokinetics, it is necessary to understand the delivery of 

drugs, the distribution and the mass transfer of the drugs in the capillaries and 

extravascular tissues and in various organs (including tumors). As the drug is transported 

through the blood to the tissue or its target, it is very important to study the flow of 

plasma from the capillaries to the tissue, because the effective capillary wall is the only 

site that the drug can penetrate. 

A common model for studying drug distribution is the stirred tank model 

described in Section 2.1, which does not consider any tissue mass transfer resistance 

(Baxter and Jain, 1995), although it takes into account the resistance of the capillary 

membrane. Therefore, it does not describe the actual concentration of drug in the extra-

vascular space, the distribution within the organ. Another approach is that of Krogh 

cylindrical which deals with a single capillary to study the mass transfer from blood to 

extravascular tissue that takes place through the walls of the capillary (Krogh, 1919). 

Traditionally Krogh cylinder model considers diffusion rather than pressure-driven 

convective flow (Fournier, 1999). Some models consider convection due to lymph flow, 
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but the driving force for local convection is much higher (Jain, 1998). The next section 

will discuss these models.  Implicit in the traditional present Krogh cylinder model is the 

feature that convection is small and can be neglected.  Only diffusion of the drug is 

considered.  Whereas convection is small in the tissues, the diffusion in tissues (below  

10-5 cm2/s, Saltzman, 2001) is also small and convection may not be neglected in 

comparison.  

In the third section, the local convective flow and diffusion of the plasma in the 

interstitial space are discussed quantitatively, which improves the Krogh cylinder model. 

For a proper mass transfer calculations, a fluid flow model is first required. Eventually, 

there are plans to further carry out large-scale transport work. It is expected that the 

simple capillary effect can be summarized as an effect on the entire organ (Fournier, 

1999).                   
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2. PREVIOUS WORK 

2.1. PHARMACOKINETIC MODEL 

Pharmacokinetics studies the bioavailability of drugs, in which the drug is that is 

absorbed and eventually reaches the plasma. The concentration in plasma decreases over 

time as the drug is excreted through the kidneys or destroyed in the liver. As the drug 

concentration is a function of time, it will reach a very high level when ingested and then 

fall off. The integral under the curve is approximately related to bioavailability. There are 

many unknown factors in the therapeutic action. Therefore, bioavailability is considered 

as a measure of drug efficacy. In order to obtain sufficient bioavailability in treatment, 

sometimes the dose needs to be increased to the extent that it is harmful to the body. The 

clearance rate may also be high and result in low bioavailability, and then the 

concentration falls, perhaps it will be lower than the required level and have no 

therapeutic effect. The drugs cannot reach specific organs which need treatment, and 

drugs first reach other parts of the body such as the heart in large amounts causing 

damage. The general flow is shown in Figure 2.1.  Material balance is satisfied, if the 

urinary excretion U is compensated by the same amount of liquid entering the box shown 

as plasma.  

Every organ is further divided into two sub-compartments: the vascular space, and 

the extravascular space or the interstitial space as shown in Figure 2.2. There is a 

membrane that separates the two chambers and has the same properties as the membrane 

around the capillary tube. Qi is total quantity plasma input, and Cpl is plasma in the 

capillary. Li represents the flow to the lymphatic system which only happens to the fluid 
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that has left the vascular space for the interstitial space.  The remaining fluid returns to 

the circulatory system.  

 

 

Figure 2.1 The Pharmacokinetic Model of the flow in the body (Sane, 2002). 
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Figure 2.2 Vascular and extravascular sub-compartments (Sane, 2002). 

 

2.2. KROGH CYLINDER MODEL 

Capillaries are the main seat of mass transfer between blood and extravascular 

tissue. As mentioned earlier, their surface area is very large and their walls do not contain 

smooth muscle tissue. The capillary wall is permeable and obeys the phenomenology of 

membrane transport. In the model, only diffusion has so far been assumed to occur in 

extravascular tissue. However, flow is known to take place through the capillary walls, 

out of the capillary near the arterial end and the same flow returns at the venous end. 

Additional, the calculation by Starling showed a net average outflow of 28.3 mm and a 

net average inflow of 28 mm. These values are averages and not constants. The actual 

pressure of the capillary is very dynamic and varies locally. Almost of all the flow returns 

to the capillaries, except for a small fraction that is eventually absorbed by the lymphatic 

system. Therefore, according to Guyton and Hall (2000), 90 percent of the fluid that goes 

out through the membrane returns to it. The net outflow is to the lymph.   

 



www.manaraa.com

 

 

16 

 

Figure 2.3 Schematic view of Krogh Cylinder. 

 

2.3. PRESENT MODEL  

The model used here considers only the fluid flow.  The dimensions of the Krogh 

cylinder is considered in the Table 2.1 below. The organ under consideration is the liver 

and we also consider a typical tumor. From the point of view of fluid flow, the 

extravascular tissue is considered to be a porous medium of permeability k. The flow 

through the capillary tube is laminar.  We also know the fraction of fluid entering that is 

lost to the lymphatic system. 

The values of the vascular space and the interstitial space of an organ are known 

which ratio is the same as 2 2/ ( )i ir R r in Figure 2.3. This way R can be calculated.  

Similarly Li/Qi in Figure 2.2 is ω. 
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Table 2.1 Dimensions of the Krogh Cylinder for Liver and Tumor. 

L Length of the capillary 0.02 cm Healthy tissue Netti et al (1996) 

ro Outer radius of the 

capillary 

0.00055 cm Healthy tissue Netti et al (1996) 

Lp Membrane hydraulic 

coefficient 

2.700 x10-11 

cm/(dyn.s) 

Liver Baxter and Jain 

(1989) 

Lp Membrane hydraulic 

coefficient 

21.003x10-11 

cm/(dyn.s) 

Tumor 

tissue 

Baxter and Jain 

(1989) 

ri Inner radius of the 

capillary 

0.0005 cm Healthy tissue Netti et al (1996) 

μ Viscosity of plasma 10-2 poise Similar to water Fournier (1999) 

�̂� Viscosity of blood in 

the capillary 
3×10-3 poise Whole blood Fournier (1999) 

∆p Pressure drop 26664.4 dyn/cm2 Healthy tissue Guyton and Hall 

(2000) 

K= 

k/μ 

Conductivity 6.398x10-12 

cm2/(dyn.s) 

Liver Swabb et al (1974) 

K= 

k/μ 

Conductivity 2.250x10-10 

cm2/(dyn.s) 

Tumor Boucher et al 

(1998) 

ω Fraction fluid lost 5-10% Tumor Gullino and 

Grantham (1961) 

ω Fraction fluid lost 0.01% Liver Baxter, Zhu, 

Mackensen, and 

Jain (1994) 
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3. CONVECTIVE –DIFFUSIVE MODEL 

3.1. KROGH CYLINDER MODEL 

Krogh cylinder model for the tissue and convection are consider. Each capillary is 

assumed to supply blood to certain amount of tissue. The blood supplies to the space of 

tissue is determined by numerical values from literature.  The basic model is that of Sane 

(2002) but contains many corrections and changes. 

3.1.1. Model of the Flow in Capillary. The cross-section area is very small in 

capillary, the flow in capillaries lies in the low Reynolds number limit from Schmidt-

Schonbein (1999) and which is applied here. The fluid motion is given by Stokes 

equation, and assumes the blood is Newtonian fluid. Hence, the momentum equation is 

 
2 ˆˆ ˆp    0  v   (3.1) 

All quantities that refer to flow in the capillary are shown with carats.  The continuity 

equation is 

 ˆ. 0 v  (3.2) 

3.1.2. Model for Flow through the Extravascular Space. In the extravascular 

space, the layout is considered to be spherical particles with interstices between them 

where the flow of fluid occurs. Fibrous polysaccharides and proteins fill in the interstices 

space between cells in which hider plasma flow. The equation could be described as the 

flow though the porous medium given by Brinkman (1947) equation 

 2p
k


    0  v v   (3.3) 
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where the 𝑘 is the permeability, and it relates to the size and volume fraction. In Darcy’s 

law equation the viscous term, the second term on the right-hand side is missing; v is 

superficial velocity in the interstices space, which is the inter-cellular space and filled 

with fibers.  

 The continuity equation is 

 . 0 v  (3.4) 

Both can be combined to provide  

 

 4 20 E E
k


      (3.5) 

µ can be eliminated, and then equation will become 

 
 

2
4 E

E
k




    

 

(3.6) 

3.2. SOLUTION  

In the porous medium, the flow is two dimensional: the radial velocity 

1
rv

r z





   and the axial velocity 

1
zv

r r


 


 which represents to r and z, the two 

directions. The continuity and momentum equations are both satisfied by the solution to 

 E4𝜓 = 𝑘E2𝜓 (3.7) 

which can be written as 

 E2𝜓1 = 𝑘𝜓1 (3.8) 

 E2𝜓 = 𝑘𝜓1 (3.9) 
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where 

 E2 =
𝜕2

𝜕𝑟2
−

1

𝑟

𝜕

𝜕𝑟
+

𝜕2

𝜕𝑧2
  𝑎𝑛𝑑  𝑘−

1
2 = 𝑠 (3.10) 

which the differential equation satisfied by the solution of Stokes stream function in 

cylinder coordinate. A change of variable to  

 𝜉 = 𝑠𝑟, 𝜁 = 𝑠𝑧, and 𝑠 = 1/√𝑘 (3.11) 

By using the method of separation of variables and 𝜓1 = 𝑃(𝜉)𝑋(𝜁) and Eq. 

(3.11) becomes  

 𝜉
𝑋′′

𝑋
=

1

𝜉

𝑃′

𝑃
−

𝑃′′

𝑃
= −𝑏2 (3.12) 

and where P and Q are 

 𝑃 = 𝑐3𝜉𝐼1(𝛾𝜉) + 𝑐4𝜉𝐾1(𝛾𝜉) (3.13) 

 𝑋 = 𝑐1𝑐𝑜𝑠(𝑏𝜁) + 𝑐2𝑠𝑖𝑛(𝑏𝜁) (3.14) 

where  𝛾2 = 1 + 𝑏2, b is constant of separation, 𝑐𝑖 are constants of integration.  𝐼1(𝛾𝜉) is 

the modified Bessel function of the first kind, first order, and 𝐾1(𝛾𝜉) is the modified 

Bessel function of the second kind, first order.  

The solution for 𝜓 = 𝑄(𝜉)𝑋(𝜁) from Eq. (3.9) is 

 
𝜕2𝑄

𝜕𝜉2
−

1

𝜉

𝜕𝑄

𝜕𝜉
+𝑏2𝑄 = 𝑃 (3.15) 

Separate Q to 𝑈0 + 𝑈1 

 𝑄 = 𝑈0 + 𝑈1 (3.16) 

where 𝑈0 is the complimentary solution 

 𝑈0 = 𝑐5𝐼0(𝑏𝜉) + 𝑐6𝐾0(𝑏𝜉) (3.17) 

and the particular integral is  
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𝜕2𝑈1

𝜕𝜉2
−

1

𝜉

𝜕𝑈1

𝜕𝜉
− 𝑏2𝑈1 = 𝑃 (3.18) 

With 𝛾2 = 1 + 𝑏2 the solution is  

 𝑈1 = 𝑃 (3.19) 

So 

 𝑄 = 𝑐5𝐼0(𝑏𝜉) + 𝑐6𝐾0(𝑏𝜉) + 𝑃 (3.20) 

Hence the stream function is 

𝜓 = (𝑐3𝜉𝐼1(𝛾𝜉) + 𝑐4𝜉𝐾1(𝛾𝜉) + 𝑐5𝜉𝐼1(𝑏𝜉) + 𝑐6𝜉𝐾1(𝑏𝜉))(𝑐1𝑐𝑜𝑠(𝑏𝜁) + 𝑐2𝑠𝑖𝑛(𝑏𝜁))

+ (𝛼3𝜉𝐼1(𝜉) + 𝛼4𝜉𝐾1(𝜉) + 𝛼5

𝜉2

2
+ 𝛼6) (𝛼1𝜁 + 𝛼2) 

(3.21) 

In the interstitial fluid, the velocity both Z and R direction, and pressure present   

𝑣𝑧 = −𝑠2[𝑐3𝛾𝐼0(𝛾𝜉) − 𝑐4𝛾𝐾0(𝛾𝜉) + 𝑐5𝑏𝐼0(𝑏𝜉) − 𝑐6𝑏𝐾0(𝑏𝜉)][𝑐1𝑏𝑐𝑜𝑠(𝑏𝜁)

+ 𝑐2 𝑠𝑖𝑛(𝑏𝜁)] − 𝑠2[𝛼3𝐼0(𝜉) − 𝛼4𝐾0(𝜉) + 𝛼5][𝛼1𝜁 + 𝛼2] 
(3.22) 

𝑣𝑟 = 𝑠2 {[𝑐3𝐼1(𝛾𝜉) + 𝑐4𝐾1(𝛾𝜉) + 𝑐5𝐼1(𝑏𝜉) + 𝑐6𝐾1(𝑏𝜉)][𝑐2𝑏𝑐𝑜𝑠(𝑏𝜁) − 𝑐1𝑏 𝑠𝑖𝑛(𝑏𝜁)]

+ 𝛼1 [𝛼3𝐼1(𝜉) + 𝛼4𝐾1(𝜉) + 𝛼5

𝜉

2
+

𝛼6

𝜉
]} 

(3.23) 

℘

𝑠3𝜇
= [𝑐5𝐼0(𝑏𝜉) − 𝑐6𝐾0(𝑏𝜉)][𝑐1 𝑠𝑖𝑛(𝑏𝜁) − 𝑐2𝑐𝑜𝑠(𝑏𝜁)] + 𝛼5 [𝛼1

𝜁2

2
+ 𝛼2𝜁]

− 𝛼1 [𝛼5

𝜉2

4
+ 𝛼6𝑙𝑛𝜉] + 𝛼7 

(3.24) 

Inside the capillary, a general solution for the stream function is available for a 

Newtonian fluid (Haberman and Sayre, 1958). Unlike in the extravascular tissue, which 

is a porous solid, the space in the capillary is a void; but unlike the fluid that flows in the 

tissues, which is plasma, the fluid inside the capillary is whole blood and non-Newtonian 

and very inhomogeneous at these length scales. Nevertheless, we make the simplifying 
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assumption that the fluid is Newtonian and use the solution given by Haberman and 

Sayre (1958). It is noteworthy that their method of obtaining the stream function has been 

followed in obtaining the solution for the porous medium. All quantities in the capillary 

have been shown with carats. Solving these equations as before gives the solution as 

 

�̂� = [�̂�3𝜉𝐼1(𝑎𝜉) + �̂�4𝜉𝐾1(𝑎𝜉) + �̂�5𝜉2𝐼0(𝑎𝜉) + �̂�6𝜉2𝐾0(𝑎𝜉)][�̂�1𝑐𝑜𝑠(𝑎𝜁) + �̂�2𝑠𝑖𝑛(𝑎𝜁)]

+ (�̂�3 + �̂�4𝜉2)(�̂�1 + �̂�2𝜁) + �̂�7𝜉4(�̂�5 + �̂�6𝜁)

+ 𝜁2(�̂�8𝜉2 + �̂�9𝜁 + �̂�10) 

(3.25) 

𝑣𝑧 = 𝑠2{[�̂�4𝑎𝐾0(𝑎𝜉) − �̂�3𝑎𝐼0(𝑎𝜉) − �̂�5𝑎𝜉𝐼1(𝑎𝜉) − 2�̂�5𝐼0(𝑎𝜉) + �̂�6𝑎𝜉𝐾1(𝑎𝜉)

− 2�̂�6𝐾0(𝑎𝜉)][�̂�1𝑐𝑜𝑠(𝑎𝜁) − �̂�2𝑠𝑖𝑛(𝑎𝜁)] − 2�̂�4(�̂�1 + �̂�2𝜁)

− 4�̂�7𝜉2(�̂�5 + �̂�6𝜁) − 2�̂�8𝜁2} 

(3.26) 

𝑣𝑟 = 𝑠2 {𝑎[�̂�3𝐼1(𝑎𝜉) + �̂�4𝐾1(𝑎𝜉) + �̂�5𝜉𝐼0(𝑎𝜉) + �̂�6𝜉𝐾0(𝑎𝜉)][�̂�2𝑐𝑜𝑠(𝑎𝜁)

− �̂�1𝑠𝑖𝑛(𝑎𝜁)] + �̂�2 (
�̂�3

𝜉
+ �̂�4𝜉) + �̂�6�̂�7𝜉3

+ 2𝜁 (�̂�8𝜉 +
3�̂�9𝜁

2𝜉
+ �̂�10)} 

(3.27) 

℘̂

𝑠3𝜇
= 2𝑎[�̂�5𝐼0(𝑎𝜉) + �̂�6𝐾0(𝑎𝜉)][�̂�2𝑐𝑜𝑠(𝑎𝜁) − �̂�1𝑠𝑖𝑛(𝑎𝜁)] + �̂�7 − 4�̂�6�̂�7𝜉2

− 16�̂�7 (�̂�5𝜁 + �̂�6

𝜁2

2
) + 6�̂�9𝑙𝑛𝜉 + 4�̂�8𝜁 + �̂�11 

(3.28) 

 

3.3. BOUNDARY CONDITIONS 

The boundary conditions are applied in Krogh cylinder: 

There is no slip at each capillary walls 

1. 𝑣𝑍 = 0 at 𝜁 = 0 

2. 𝑣𝑍 = 0 at 𝜁 = 𝛬 = 𝑠𝐿 
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The leak of the capillary 

3. ∫ 𝑣𝑟
𝛬

0
|𝜉=𝑍2𝜋𝑍 𝑑𝜁 = 𝜔〈�̂�𝑧𝑜〉𝜋𝑍2 at 𝜉 = 𝑍 = 𝑠𝑅  

4. 𝑣𝑧 = 0 at 𝜉 = 𝜉0 = 𝑠𝑟𝑜 

5. 𝑣𝑧 = 0 at 𝜉 = 𝑍 = 𝑠𝑅 

Inlet velocity of plasma in capillary  

6. 𝑣𝑧|𝜁=0 = 2〈𝑣𝑧𝑜〉 [1 − (
𝜉

𝜉𝑖
)

2

]  𝑎𝑡 𝜁 = 0 

Outlet velocity of plasma in capillary 

7. 𝑣𝑧|𝜁=Λ = (1 − 𝜔) × 2〈𝑣𝑧𝑜〉 [1 − (
𝜉

𝜉𝑖
)

2

]  𝑎𝑡 𝜁 = Λ 

The center line of fluid in capillary 

8. 𝑣𝑧 is finite at 𝜉 = 0 

9. 𝑣𝑟 = 0 at  𝜉 = 0 

10. 𝑣𝑧 = 0 at  𝜉 = 𝜉𝑖 = 𝑠𝑟𝑖 

The fluid pressure and osmotic pressure force at the capillary 

11. 𝑣𝑟|𝜉𝑖
= 𝐿𝑃(℘̂|𝜉𝑖

− ℘|𝜉0
− 𝜎∆𝛱) 

The fluid permeate from capillary to tissue 

12. 2𝜋𝜉𝑖�̂�𝑟|𝜉𝑖
= 2𝜋𝜉0𝑣𝑟|𝜉0

 

Applying the boundary conditions a set of the linear equations are obtained which are 

solved simultaneously for the constants. The overall conservation requires that the 

constant 𝑐2𝑐3 = 0. To satisfy conditions 8 and 12, the Fourier sine and cosine series are 

needed  
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𝜁

𝛬
−

𝜁2

𝛬2
=

8

𝜋3
∑

𝑠𝑖𝑛 (2𝑚 + 1)𝜋
𝜁
𝛬

(2𝑚 + 1)3

∞

𝑚=0

         0 ≤ 𝜁 ≤ 𝛬 (3.29) 

 (
𝜋𝜁

𝛬
)

2

=
𝜋2

3
− 4 ∑(−1)𝑛+1

𝑐𝑜𝑠 (
𝑛𝜋𝜁

𝛬
)

𝑛2

∞

𝑛=1

     0 ≤ 𝜁 ≤ 𝛬 (3.30) 

 
𝜁

𝛬
−

1

2
=

4

𝜋2
∑ −

𝑐𝑜𝑠(2𝑚 + 1)𝜋
𝜁
𝛬

(2𝑚 + 1)2

∞

𝑛=1

           0 ≤ 𝜁 ≤ 𝛬 (3.31) 

Appendix A has all the details on how the set of equations that are found and solved. 

These constants are seen in the final equations listed below. 

𝑣𝑍

〈𝑣𝑧𝑜〉
= 𝛽 ∑ 𝑠𝑖𝑛(𝑎𝑛𝜁)

∞

𝑚=1

[𝑐2𝑛𝑐4𝑛𝛾𝑛𝐾0(𝛾𝑛𝜉) − 𝑐2𝑛𝑐5𝑛𝑎𝑛𝐼0(𝑎𝑛𝜉) + 𝑐2𝑛𝑐6𝑛𝑎𝑛𝐾0(𝑎𝑛𝜉)] (3.32) 

𝑣𝑟

〈𝑣𝑧𝑜〉
= 𝛽 ∑ 𝑎𝑛

∞

𝑚=1

𝑐𝑜𝑠(𝑎𝑛𝜁)[𝑐2𝑛𝑐4𝑛𝐾1(𝛾𝑛𝜉) + 𝑐2𝑛𝑐5𝑛𝐼1(𝑎𝑛𝜉) + 𝑐2𝑛𝑐6𝑛𝐾1(𝑎𝑛𝜉)]

+
𝜔𝜉𝑖

2

2𝛬

1

𝜉
 

(3.33) 

℘

∆℘
= 𝛼 ∑ 𝑐𝑜𝑠(𝑎𝑛𝜁)

∞

𝑚=1

[−𝑐2𝑛𝑐5𝑛𝐼0(𝑎𝑛𝜉) + 𝑐2𝑛𝑐6𝑛𝐾0(𝑎𝑛𝜉)] 
(3.34) 

𝜓

〈𝑣𝑧𝑜〉𝜉𝑖
2 = 𝛽 ∑ 𝑠𝑖𝑛(𝑎𝑛𝜁)

∞

𝑚=1

𝜉

𝜉𝑖
2

[𝑐2𝑛𝑐4𝑛𝐾1(𝛾𝑛𝜉) + 𝑐2𝑛𝑐5𝑛𝐼1(𝑎𝑛𝜉) + 𝑐2𝑛𝑐6𝑛𝐾1(𝑎𝑛𝜉)]

+
𝜔𝜉𝑖

2

2𝛬

1

𝜉
 

(3.35) 

𝑣𝑧

〈𝑣𝑧𝑜〉
= 𝛽 ∑ −𝑠𝑖𝑛(𝑎𝑛𝜁)

∞

𝑚=1

[�̂�2𝑛�̂�3𝑛𝑎𝑛𝐼0(𝑎𝑛𝜉) + �̂�2𝑛�̂�5𝑛𝑎𝑛𝜉𝐼1(𝑎𝑛𝜉)

+ 2�̂�2𝑛�̂�5𝑛𝐼0(𝑎𝑛𝜉)] + 2 (1 −
𝜉2

𝜉𝑖
2) − 2𝜔

𝜁

𝛬
(

𝜉2

𝜉𝑖
2 −

𝜁

𝛬
) 

(3.36) 



www.manaraa.com

 

 

25 

𝑣𝑟

〈𝑣𝑧𝑜〉
= 𝛽 ∑ 𝑎𝑛𝑐𝑜𝑠(𝑎𝑛𝜁)[�̂�2𝑛�̂�3𝑛𝐼1(𝑎𝜉) + �̂�2𝑛�̂�5𝑛𝜉𝐼0(𝑎𝑛𝜉)]

∞

𝑚=1

+
𝜔

𝛬
𝜉 (1 −

1

2

𝜉2

𝜉𝑖
2)

+ 𝛽
𝜉

(2𝛼 + 𝜉𝑖)
(

1

2
−

𝜁

𝛬
) 

(3.37) 

℘̂

∆℘
= 2𝛼 ∑ 𝑐𝑜𝑠(𝑎𝑛𝜁)𝑎𝑛�̂�2𝑛�̂�5𝑛𝐼0(𝑎𝑛𝜉) − [

𝜉𝑖 + 12𝛼

𝜉𝑖 + 6𝛼
]

∞

𝑚=1

𝜁

𝛬
 

(3.38) 

�̂�

〈𝑣𝑧𝑜〉𝜉𝑖
2 = 𝛽 ∑ 𝑠𝑖𝑛(𝑎𝑛𝜁)

∞

𝑚=1

[�̂�2𝑛�̂�3𝑛𝜉𝐼1(𝑎𝑛𝜉) + �̂�2𝑛�̂�5𝑛𝜉2𝐼0(𝑎𝑛𝜉)]

+ 𝛽
𝜁𝜉2

2(𝜉𝑖 + 2𝛼)
(1 −

𝜁

𝛬
) − (

𝜉

𝜉𝑖
)

2

(1 −
1

2

𝜉2

𝜉𝑖
2) 

(3.39) 

 

where n = 2m-1 

 𝛼 = 𝐿𝑝𝑠𝜇 (3.40) 

 𝛽 =
𝐿𝑝∆℘

〈�̂�𝑧𝑜〉
 (3.41) 

 𝛾𝑛 = √𝑎𝑛
2 + 1 (3.42) 

 𝑎𝑛 =
𝜋𝑛

𝛬
 (3.43) 

 𝜇𝑟 =
�̂�

𝜇
 (3.44) 



www.manaraa.com

 

 

26 

4. RESULTS AND DISCUSSION 

4.1. LENGTH SCALES AND DIMENSIONLESS GROUPS 

The equations describing the flow profiles contain four length scales: k1/2 , ir , or , 

and L . The last three are similar in magnitude, but the first is very different and of the 

order of 1-10 nm, which gives an estimate of gap width between the cells, that is, the 

interstitial spaces in the extravascular tissue. Because of this disparity, the dimensionless 

term Z works out to a very large number, in tens of thousands. As a result, some of the 

Bessel functions with such arguments become too high to accommodate in any computer 

program. It also shows why numerical solution was avoided. k1/2 gives us very stiff 

equations which are difficult to solve with accuracy.  Eventually such terms were set to 

infinity and the condition of boundedness was imposed making the constant c3 in Eq. 

(3.22) to be zero. 

Two other dimensionless groups 𝛼, and 𝛽, Eqs. (3.40) and (3.41), play key roles. 

Most of the flow in the porous medium is governed by Darcy's law, Eq. (3.3) without the 

second term on the right. In that case, velocity ~ (𝑘/𝜇) ∆𝑝 (length scale). The length 

scale is taken to be the interstitial dimension k1/2 (= s-1), in which case the resistance to 

flow in the porous medium ∆𝑝/velocity ~ 𝜇𝑠. The resistance to flow through the capillary 

wall is ~ 1/Lp. This leads to the conclusion that  

 

 𝛼 =
resistance to flow in the porous medium

resistance to flow across the capillary wall
= 𝐿𝑝𝑠𝜇 (4.1) 
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 𝛽 =
resistance to flow through the capillary

resistance to flow across the capillary wall
=

𝐿𝑝∆℘

〈𝑣𝑧〉
 (4.2) 

The values of individual constants making up 𝛼 and 𝛽 and the four length scales have 

been taken from the compilations in (Netti, et al,1996 and Baxter and Jain, 1989). If we 

use these values then  

6 11.4 10s cm   (4.3) 

which the numerical routines of MATLAB cannot handle and hence s has been decreased 

to 106. Further, the calculated values of other constants lead to  

𝛼 = 8.100 × 10−7 and 𝛽 =  5.184 × 10−7 (4.4) 

These are referred to as micro-constants. 

 As mentioned earlier we set ΔΠ to zero and assume a value for the inlet velocity  

ˆ
zov  .  At the end of the calculations, we calculate the pressure drop across the 

capillary as 
0

ˆ ˆ ˆ
z z L 

   .  Because all equations are linear, we set 

to 20 mm and find proportionately the corresponding value of ˆ
zov  .  This is done 

where the organ (liver or tumor) and the value of ω has been fixed beforehand. 

 

4.2. FIGURES OF VELOCITY AND PRESSURE 

 The expressions of the integral constant in the solution are very complex and 

consists of a large number of products of five Bessel functions. Boundary conditions 

selected allow for leaky issues (ω not equal to zero), which is the lymph circulatory 

system. Using MATLAB to calculate the constants of these expressions to get the 

graphics, the program is very slow and report that matrix is close to singular or badly 
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scaled due to 5 5  Bessel functions. In MATLAB, the five equations obtained under the 

boundary conditions are directly solved, and the constant values are obtained. In Sane 

(2002)’s thesis, her conclusion mention that the microvalues of 𝛼 and 𝛽 represent the 

relative resistances to flow and that is the blood zips through the capillary with very little 

plasma flowing out of the capillary membrane to extravascular tissue. The above 

conclusion also match with this report and the introduction mentions.   

 

 

Figure 4.1 Axial velocity in the capillary in normal liver at ω = 0. 

 

 

All the velocities in Figure 4.1 - Figure 4.4 and Figure 4.9 - Figure 4.12 are in 

centimeters pre-second, Figure 4.5, Figure 4.6, Figure 4.13, Figure 4.14 are stream 

functions, and Figure 4.7, Figure 4.8, Figure 4.15, Figure 4.16 pressures in dynes/cm2. 

The axial velocity in the capillary is very high at ~ 1 cm/s. On the other hand the 

velocities in the extravascular tissue is ~ 10-13 cm/s, a very low value. However, a 
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circulation is observed in the extravascular tissue as anticipated. The leaky system is 

considered below for a tumor with ω = 0.1. The consequence of adding a leakage in the 

tumor leads to 

 

 

Figure 4.2 Radial velocity in the capillary in normal liver at ω = 0. 

 

 

Figure 4.3 Axial velocity in the extravascular space in a normal liver for ω = 0. 
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Figure 4.4 Radial velocity in the extravascular space in a normal liver at ω = 0. 

 

 

  

Figure 4.5 Stream function in the capillary in normal liver at ω = 0. 
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Figure 4.6 Stream function in the extravascular space in a normal liver at ω = 0. 

 

 

 

Figure 4.7Pressure in the capillary in normal liver at ω = 0. 
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Figure 4.8 Pressure in the extravascular space in a normal liver at ω = 0. 

 

virtual washout in the extravascular tissue. However, the axial velocity in the capillary 

still remains at ~ 1 cm/s.  If ω is as low as 10-4 as in the healthy tissue, we will not see 

such a washout.   

 Whereas all numbers appear reasonable, one number of the axial velocity in the 

capillary is too high which is 0
ˆ

zv  ~ 1 cm/s, when it should be 0.02-0.17 cm/s (Aaron 

and James, 2015).  
0

ˆ ˆ ˆ
z z L 

  is kept at 20 mm of mercury as 

stated.   This normalization is done for ω = 0.  For ω greater than zero, this pressure drop 

falls linearly with increasing ω by not by much. 

The consequence of the present results is that we can now look at convective-

diffusive transport in Krogh cylinder next, using the velocity profiles obtained here.  It is 

noteworthy that a big difference could be anticipated in “bioavailability” which is drug in 

the capillary and the amount of drug available in the extravascular tissue. 
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Figure 4.9 Axial velocity in the capillary in a tumor at ω = 0.1. 

 

 

 

Figure 4.10 Radial velocity in the capillary in a tumor at ω = 0.1. 
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Figure 4.11 Axial velocity in the extravascular tissue in a tumor at ω = 0.1. 

 

 

 

Figure 4.12 Radial velocity in the extravascular tissue in a tumor with ω = 0.1. 
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Figure 4.13 Stream function in the capillary in a tumor at ω = 0.1. 

 

 

 

Figure 4.14 Stream function in the extravascular tissue in a tumor at ω = 0.1. 
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Figure 4.15 Pressure in the capillary in a tumor with ω = 0.1. 

 

 

 

Figure 4.16 Pressure in the extravascular tissue in a tumor with ω = 0.1. 
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5. CONCLUSION 

The main feature of the present results is that there is the mixing with capillary 

flow and extravascular tissue.  

The convection has been accounted for in a Krogh cylinder using all measured 

parameters.  Each capillary is assumed to supply plasma to certain amount of tissue. In an 

organ, all of these can be added in parallel to account for the entire organ. Convection 

appears to be very important in tumors (neoplastic tissues), its present but very low in 

healthy organs.  
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APPENDIX A. 

 

 

 

 

 

 

 

 

 

 

APPENDIX A. 

APPLYING THE BOUNDARY CONDITIONS TO OBTAIN A SET OF FIVE LINEAR 

SIMULANEOUS EQUATIONS 
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BC 1 and BC 2 give 

c1 = 0,  (A-1) 

α3 = α4 = α5 = 0  (A-2) 

 

BC 3 gives 

α1α6 =
ω〈V̂zo〉ξ𝑖

2

2Λs2
 

(A-3) 

 

BC 4 gives 

c2nc3nγI0(γξ0) − c2nc4nγK0(γ) + c2nc5nbI0(bξ0) − c2nc6nbK0(bξ0) = 0 (A-4) 

 

BC 5 gives 

c2nc3nγI0(γ𝑍) − c2nc4nγK0(γZ) + c2nc5nbI0(bZ) − c2nc6nbK0(bZ) = 0 (A-5) 

 

BC 6 gives 

�̂�1�̂�4 = −
〈�̂�𝑧𝑜〉

𝑠2
 

(A-6) 

�̂�5�̂�7 =
1

2

〈�̂�𝑧𝑜〉

𝜉𝑖
2𝑠2

 
(A-7) 

 

BC 7 gives 

α̂2α̂4 + α̂8Λ =
𝜔〈V̂zo〉

s2Λ
 

(A-8) 

α̂6α̂7 = −
1

2

𝜔〈V̂zo〉

ξi
2s2Λ

 
(A-9) 
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BC 8 gives 

ĉ6n = 0 (A-10) 

 

BC 9 gives 

ĉ4n = 0 (A-11) 

α̂3 = α̂9 = α̂10 = 0 (A-12) 

 

BC 10 gives 

[ĉ2nĉ3naI0(aξi) + ĉ2nĉ5naξI1(aξi) + 2ĉ2nĉ5nI0(aξi)]sin(a𝑛ζ)

= −2α̂8Λ2 (
ζ

Λ
−

ζ2

Λ2) 

 

(A-13) 

 

Comparing equation A-13 and the Fourier sine series in equation 3.30 

[�̂�2𝑛�̂�3𝑛𝑎𝐼0(𝑎𝜉𝑖) + �̂�2𝑛�̂�5𝑛𝑎𝜉𝐼1(𝑎𝜉𝑖) + 2�̂�2𝑛�̂�5𝑛𝐼0(𝑎𝜉𝑖)]

=
−16(1 − (−1)𝑛)�̂�8𝛬2

𝜋32𝑛3
 

(A-14) 

 

BC 11 gives 

[𝑎{�̂�2�̂�3𝐼1(𝑎𝜉𝑖) + (𝜉𝑖 − 2𝛼)�̂�2�̂�5𝐼0(𝑎𝜉𝑖)}

+ 𝛼{−𝑐2𝑐5𝐼0(𝑏𝜉0) + 𝑐2𝑐6𝐾0(𝑏𝜉0)}]𝑠2𝑐𝑜𝑠 (
𝑛𝜋𝜁

𝛬
)

= −8𝛼𝑠2�̂�6�̂�7𝜁2 − (4𝛼𝑠2�̂�8 + 𝐿𝑃𝛥℘ − 2𝑠2�̂�8𝜉𝑖)𝜁

+ [𝛼𝑠2(�̂�7 + �̂�11) − 4𝛼𝑠2𝜉𝑖
2�̂�6�̂�7 − 𝛼𝑠2𝛼7 + 𝑠2𝜉𝑖�̂�8𝛬 − 𝐿𝑃𝜎∆Π] 

(A-15) 
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We can have the sample formula  

[a{�̂�2�̂�3𝐼1(𝑎𝜉𝑖) + (𝜉𝑖 − 2𝛼)�̂�2�̂�5𝐼0(𝑎𝜉𝑖)} + 𝛼{−𝑐2𝑐5𝐼0(𝑏𝜉0) + 𝑐2𝑐6𝐾0(𝑏𝜉0)}]cos (
nπζ

Λ
)

= 𝐶1 + 𝐶2𝜁 + 𝐶3ζ2 

where  

𝐶1 = 𝐶10 + 𝐶1𝜔

= αs2(ĉ7 + α̂11 − 4α̂6α̂7ξi
2) − αs2α7 − LPσ∆Π − s2α̂2α̂4ξi − s2α̂6α̂7ξi

3
 

and 

𝐶3 = 𝐶3𝜔 + 𝐶3𝑐𝑜𝑠 = −8αs2α̂6α̂7 

 𝐶3ζ2 = −8αs2α̂6α̂7

Λ2

π2
(

πζ

Λ
)

2

= −8αs2α̂6α̂7

Λ2

π2
[
π2

3
− 4 ∑(−1)𝑛+1

cos (
nπζ

Λ )

𝑛2

∞

𝑛=1

]

= −8αs2α̂6α̂7

Λ2

3
+ 32αs2α̂6α̂7

Λ2

π2
∑(−1)𝑛+1

cos (
nπζ

Λ )

𝑛2

∞

𝑛=1

 

 

Because C1 is constant, C2 = 0, so C1 = C3, and C3cos = cos term 

{

𝐶1 + 𝐶3𝜔 = 0

𝐶3𝑐𝑜𝑠 = [
𝑎{�̂�2�̂�3𝐼1(𝑎𝜉𝑖) + (𝜉𝑖 − 2𝛼)�̂�2�̂�5𝐼0(𝑎𝜉𝑖)}

+𝛼{−𝑐2𝑐5𝐼0(𝑏𝜉0) + 𝑐2𝑐6𝐾0(𝑏𝜉0)}
] s2cos (

nπζ

Λ
)
 

 

Comparing it with Fourier Cosine series in equation 3.31 
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[𝑎{�̂�2�̂�3𝐼1(𝑎𝜉𝑖) + (𝜉𝑖 − 2𝛼)�̂�2�̂�5𝐼0(𝑎𝜉𝑖)} + 𝛼{−𝑐2𝑐5𝐼0(𝑏𝜉0) + 𝑐2𝑐6𝐾0(𝑏𝜉0)}]

= −16𝛼
(−1)𝑛+1

𝑛2

𝜔𝛬〈�̂�𝑧𝑜〉

𝜉𝑖
2𝜋2𝑠2

 

(A-16) 

BC 12 gives  

𝑎ξ𝑖[�̂�2�̂�3𝐼1(𝑎𝜉𝑖) + �̂�2�̂�5𝜉𝑖𝐼0(𝑎𝜉𝑖)]

− 𝜉0[𝑐2𝑐3𝐼1(𝛾𝜉0) + 𝑐2𝑐4𝐾1(𝛾𝜉0) + 𝑐2𝑐5𝐼1(𝑏𝜉0)

+ 𝑐2𝑐6𝐾1(𝑏𝜉0)]}𝑐𝑜𝑠 (
𝑛𝜋𝜁

Λ
) = −

𝐿𝑝∆℘𝜉𝑖
2

𝑠2(2𝛼 + 𝜉𝑖)
(

𝜁

Λ
−

1

2
) 

(A-17) 

Comparing it with Fourier Cosine series in equation 3.32 

ξ𝑖[�̂�2�̂�3𝐼1(𝑎𝜉𝑖) + �̂�2�̂�5𝜉𝑖𝐼0(𝑎𝜉𝑖)]

− 𝜉0[𝑐2𝑐3𝐼1(𝛾𝜉0) + 𝑐2𝑐4𝐾1(𝛾𝜉0) + 𝑐2𝑐5𝐼1(𝑏𝜉0) + 𝑐2𝑐6𝐾1(𝑏𝜉0)]

=
4Λ𝐿𝑝∆℘𝜉𝑖

2

𝑠2(2𝛼 + 𝜉𝑖)𝑛3𝜋3
 

(A-18) 
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APPENDIX B. 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX B. 

MATLAB PROGRAM USED TO CALCULATE THE CONSTANTS AND 

GENERATE PLOTS 
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clc 

clear all 

tic  

s=1e6; 

r_i=0.00050; 

r_o=0.00055; 

xi_i=r_i*s;  

xi_o=r_o*s;  

L=0.02; 

lambda=L*s;  

mu=0.03; 

Lp=21.003e-11; 

v_z=1.387; 

del_p=28032.00000; 

r=0.004; 

Z=r*s  

a=Lp*s*mu;  

b=Lp*del_p/v_z;  

w=0.0; 

N_sum=100; 

N_max=100; 

  

PSITF=zeros(N_max,N_max); 
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VZTF=zeros(N_max,N_max); 

VRTF=zeros(N_max,N_max); 

POUT=zeros(N_max,N_max); 

PSICF=zeros(N_max,N_max); 

VZCF=zeros(N_max,N_max); 

VRCF=zeros(N_max,N_max); 

PIN=zeros(N_max,N_max); 

  

%Defining the mesh grid 

[xetat,xit]=ndgrid(0:(lambda)/(N_max - 1):lambda,xi_o:(Z-xi_o)/(N_max - 

1):Z);%outside 

[xetac,xic]=ndgrid(0:(lambda)/(N_max - 1):lambda,0:(xi_i)/(N_max - 1):xi_i);%inside 

n=1; 

for n=1:N_sum 

    m=(n-1)/2; 

    an=pi*n/lambda; 

    gn=sqrt((an^2)+1); 

    a_xi=xi_i*an; 

    a_xo=xi_o*an; 

    a_Z=Z*an; 

    g_xo=gn*xi_o; 

    g_Z=Z*gn; 
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    %matrix 

    a8i=-Lp*del_p/((2*a+xi_i)*lambda); 

    a6a7i=-(1/2)*((w*v_z)/(xi_i^2*lambda)); 

    a1a4i=-v_z; 

    a5a7i=0.5*v_z/((xi_i)^2); 

    a2a4i=w*v_z/(lambda)-a8i*lambda; 

    a1a6=w*v_z*xi_i^2/(2*lambda); 

     

    K0gZ=besselk(0,g_Z); 

    I0bZ=besseli(0,a_Z); 

    K0bZ=besselk(0,a_Z); 

    b1=0; 

     

    K0gxo=besselk(0,g_xo); 

    I0bxo=besseli(0,a_xo); 

    K0bxo=besselk(0,a_xo); 

    b2=0; 

     

    I0axi=besseli(0,a_xi); 

    c2c5in=an*xi_i*besseli(1,a_xi)+2*I0axi; 

    b3=-((1-(-1)^n)./(2*n.^3))*16*Lp*del_p*lambda/((2*a+xi_i)*pi^3); 

     

    I1axi=besseli(1,a_xi); 
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    I0axi=besseli(0,a_xi); 

    K1gxo=besselk(1,g_xo); 

    I1axo=besseli(1,a_xo); 

    K1axo=besselk(1,a_xo); 

    b4=-4*(lambda*Lp*del_p*xi_i^2)/((2*a+xi_i)*pi^3)*((1-(-1)^n)./(2*n.^3)); 

     

    anI1axi=an*besseli(1,a_xi); 

    c2c5in2=an*besseli(0,a_xi)*(xi_i-2*a); 

    aK0axo=a*besselk(0,a_xo); 

    aI0axo=a*besseli(0,a_xo); 

    b5=-16*a*(-1)^(n+1)*w*lambda*v_z/((2*n-1)^2*xi_i^2*pi^2); 

     

    A(1,:)=[0,0,0,I0bZ,K0bZ]; 

    A(2,:)=[0,0,-(gn/an)*K0gxo,I0bxo,-K0bxo]; 

    A(3,:)=[an*I0axi,c2c5in,0,0,0]; 

A(4,:)=[an*xi_i*I1axi,an*xi_i^2*I0axi,-xi_o*K1gxo,-xi_o*I1axo,-xi_o*K1axo]; 

    A(5,:)=[anI1axi,c2c5in2,0,-aI0axo,aK0axo]; 

        

    B=[b1;b2;b3;b4;b5]; 

     

    C=A\B; 

    D=A*C; 
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    c2_c3=C(1,1) 

    c2_c5=C(2,1) 

    c2c4=C(3,1) 

    c2c5=C(4,1) 

    c2c6=C(5,1) 

  

    COST=cos(an*xetat); 

    SINT=sin(an*xetat); 

    COSC=cos(an*xetac); 

    SINC=sin(an*xetac); 

     

vzt=SINT.*(c2c4*gn*besselk(0,(gn*xit))-

c2c5*an*besseli(0,(an*xit))+c2c6*an*besselk(0,(an*xit))); 

    

vrt=COST*an.*(c2c4*besselk(1,(gn*xit))+c2c5*besseli(1,(an*xit))+c2c6*besselk

(1,(an*xit))); 

     

vrt2=(1./xit)*(w*xi_i^2/(2*lambda)); 

    

psit=SINT.*(xit.*(c2c4*besselk(1,(gn*xit))+c2c6*besselk(1,(an*xit))+c2c5*bess

eli(1,(an*xit)))); 

    

presure_t=COST.*(-c2c5*besseli(0,(an*xit))+c2c6*besselk(0,(an*xit))); 
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     VZTF=VZTF+vzt; 

    VRTF=VRTF+vrt; 

    PSITF=PSITF+psit; 

    POUT=POUT+presure_t; 

     

    VZTFF=VZTF*b; 

    VRTFF=(VRTF+vrt2)*b; 

    PSITFF=PSITF*b/(xi_i^2); 

    PPTFF=a*(POUT-(w*v_z*xi_i^2*log(xit))/(2*lambda)); 

     

    %inside  

vzc=-

SINC.*(c2_c5*an*xic.*besseli(1,(an*xic))+(c2_c3*an+2*c2_c5)*besseli(0,(an*x

ic))); 

    vrc=COSC.*(an*(c2_c3*besseli(1,(an*xic))+c2_c5*xic.*besseli(0,(an*xic)))); 

    

psic=SINC.*(c2_c3*xic.*besseli(1,(an*xic))+c2_c5*(xic.^2).*besseli(0,(an*xic)))

; 

 

presure_c=2*a*COSC.*(an*c2_c5*besseli(0,(an*xic))); 

  

    VZCF=VZCF+vzc; 

    VRCF=VRCF+vrc; 
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    PSICF=PSICF+psic; 

    PIN=(PIN+presure_c); 

     

     vzc1=(-2*a1a4i-4*xic.^2*a5a7i)/v_z; 

vzc2=(-2*xetac.*a2a4i-4*xetac.*xic.^2*a6a7i 2*a8i*xetac.^2)/(Lp*del_p); 

     

vrc11=(xic*Lp*del_p/(2*a+xi_i)).*(1/2-xetac/lambda); 

     vrc22=((xic.*w/lambda)).*(1-0.5*xic.^2/xi_i^2); 

  

psic1=((xetac.*(xic/xi_i).^2).*(a2a4i+a8i*xetac))./(Lp*del_p); 

    psic2=((xic/xi_i).^2).*(a1a4i+xic.^2*a5a7i+a6a7i*xetac.*xic.^2)./(v_z); 

     

PPCFF=PIN-

8*v_z*xetac/(xi_i^2)+2*w*(2*xetac.^2+xic.^2)/(xi_i^2*lambda)+4*Lp*del_p.*x

etac/(lambda*(2*a+xi_i)); 

end 

  

%[xetac,xic] inside 

VRCFF=(VRCF*b+vrc11*b)+vrc22;  

VZCFF=((VZCF+vzc2)*b)+vzc1;  

PSICFF=(PSICF+psic1)*b+psic2;  
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meshc(xetac,xic,PSICFF);%Inside Plotting the velocity 

% meshc(xetat,xit,VZTFF);%outside 

% Plotting the velocity 
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